Standard Solar

Energy & UtilitiesThe standard solar model (SSM) is a mathematical treatment of the Sun as a spherical ball of gas (in varying states of ionisation, with the hydrogen in the deep interior being a completely ionised plasma). This model, technically the spherically symmetric quasi-static model of a star, has stellar structure described by several differential equations derived from basic physical principles. The model is constrained by boundary conditions, namely the luminosity, radius, age and composition of the Sun, which are well determined. The age of the Sun cannot be measured directly; one way to estimate it is from the age of the oldest meteorites, and models of the evolution of the Solar System. The composition in the photosphere of the modern-day Sun, by mass, is 74.9% hydrogen and 23.8% helium. All heavier elements, called metals in astronomy, account for less than 2 percent of the mass. The SSM is used to test the validity of stellar evolution theory. In fact, the only way to determine the two free parameters of the stellar evolution model, the helium abundance and the mixing length parameter (used to model convection in the Sun), are to adjust the SSM to "fit" the observed Sun. A star is considered to be at zero age (protostellar) when it is assumed to have a homogeneous composition and to be just beginning to derive most of its luminosity from nuclear reactions (so neglecting the period of contraction from a cloud of gas and dust). To obtain the SSM, a one solar mass (M?) stellar model at zero age is evolved numerically to the age of the Sun. The abundance of elements in the zero age solar model is estimated from primordial meteorites. Along with this abundance information, a reasonable guess at the zero-age luminosity (such as the present-day Suns luminosity) is then converted by an iterative procedure into the correct value for the model, and the temperature, pressure and density throughout the model calculated by solving the equations of stellar structure numerically assuming the star to be in a steady state. The model is then evolved numerically up to the age of the Sun. Any discrepancy from the measured values of the Suns luminosity, surface abundances, etc. can then be used to refine the model. For example, since the Sun formed, the helium and heavy elements have settled out of the photosphere by diffusion. As a result, the Solar photosphere now contains about 87% as much helium and heavy elements as the protostellar photosphere had; the protostellar Solar photosphere was 71.1% hydrogen, 27.4% helium, and 1.5% metals. A measure of heavy-element settling by diffusion is required for a more accurate model. The differential equations of stellar structure, such as the equation of hydrostatic equilibrium, are integrated numerically. The differential equations are approximated by difference equations. The star is imagined to be made up of spherically symmetric shells and the numerical integration carried out in finite steps making use of the equations of state, giving relationships for the pressure, the opacity and the energy generation rate in terms of the density, temperature and composition.

Founded2004

% Masters:

36%